U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for tenofovir alafenamide

 
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
Doravirine (MK-1439) is a nonnucleoside inhibitor of HIV reverse transcriptase (NNRTI). It displays excellent activities against not only WT viruses but also a broader panel of NNRTI-resistant viruses. Doravirine is a prescription medicine approved by the U.S. Food and Drug Administration (FDA) for the treatment of HIV infection in adults who have never taken HIV medicines before. Doravirine is always used in combination with other HIV medicines.
Bictegravir is a component of the fixed-dose combination product bictegravir/emtricitabine/tenofovir alafenamide (BIKTARVY®), which received marketing approval for the treatment of human immunodeficiency virus (HIV) infection by the U.S. Food and Drug Administration in February 2018. Bictegravir inhibits the strand transfer activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required for viral replication. Inhibition of integrase prevents the integration of linear HIV-1 DNA into host genomic DNA, blocking the formation of the HIV-1 provirus and propagation of the virus.
Elvitegravir is a human immunodeficiency virus type 1 (HIV-1) integrase strand transfer inhibitor used in combination with cobicistat, emtricitabine and tenofovir alafenamid (GENVOYA®) for the treatment of HIV-1 infection in antiretroviral treatment-experienced adults. Because integrase is necessary for viral replication, inhibition prevents the integration of HIV-1 DNA into the host genome and thereby blocks the formation of the HIV-1 provirus and resulting propagation of the viral infection.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cobicistat (GS-9350) is a potent, and selective inhibitor of human cytochrome P450 3A (CYP3A) enzymes. Cobicistat is a pharmacokinetic booster of several antiretrovirals. TYBOST (cobicistat) is indicated to increase systemic exposure of atazanavir or darunavir in combination with other antiretroviral agents in the treatment of HIV-1 infection.
Rilpivirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) which is used for the treatment of HIV-1 infections in treatment-naive patients. It is active against wild-type and NNRTI-resistant HIV-1. Rilpivirine is a diarylpyrimidinethat inhibits HIV-1 replication by non-competitive inhibition of HIV-1 reverse transcriptase (RT). Rilpivirine does not inhibit the human cellular DNA polymerases α, β and γ.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.
Emtricitabine was discovered by Emory researchers Dr. Dennis C. Liotta, Dr. Raymond F. Schinazi and Dr. Woo-Baeg Choi and licensed to Triangle Pharmaceuticals by Emory University in 1996. Triangle was acquired by Gilead in 2003. Emtricitabine, marketed by Gilead as Emtriva, was first approved by the U.S. Food and Drug Administration in July 2003 for the treatment of HIV infection in combination with other antiretroviral agents. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination.
The potential antiviral effect of adefovir, an acyclic nucleoside phosphonate analog of 2′-deoxyadenosine monophosphate, was first studied by Holý and De Clercq in 1980s. Adefovir is an acyclic nucleotide analog of adenosine monophosphate which is phosphorylated to the active metabolite adefovir diphosphate by cellular kinases. Adefovir diphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate deoxyadenosine triphosphate and by causing DNA chain termination after its incorporation into viral DNA. Oral adefovir dipivoxil is effective and generally well tolerated in HBeAg-positive and -negative patients chronically infected with wild-type or lamivudine-resistant HBV.
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).